Finite Math - J-term 2019 Lecture Notes - 1/21/2019

Homework

• Section 4.1 - 17, 19, 21, 23, 25, 27, 31

• Section 5.2 - 1, 3, 5, 7, 9, 11, 13, 16, 17, 18, 19, 20, 21, 24, 33, 38, 39, 41

Solving by Substitution. When solving a system by substitution, we solve for one of the variables in one of the equations, then plug that variable into the other equation.

Example 1. Solve the following system using substitution

Solution.

Example 2. Solve the following system using substitution

Solving Using Elimination. We now turn to a method that, unlike graphing and substitution, is generalizable to systems with more than two variables easily. There are a set of rules to follow when doing this

Theorem 1. A system of linear equations is transformed into an equivalent system if

- (1) two equations are interchanged
- (2) an equation is multiplied by a nonzero constant
- (3) a constant multiple of one equation is added to another equation.

Example 3. Solve the following system using elimination

Solution.

Example 4. Solve the system using elimination

Section 5.2 - Systems of Linear Inequalities in Two Variables

Solving Systems of Linear Inequalities Graphically.

Definition 1 (Solution Region/Feasible Region). Given a system of inequalities, the solution region or feasible region consists of all points (x, y) which simultaneously satisfy all of the inequalities in the system.

Example 5. Solve the following system of linear inequalities graphically:

Example 6. Solve the following system of linear inequalities graphically:

Definition 2 (Corner Point). A corner point of a solution region is a point in the solution region that is the intersection of two boundary lines.

Example 7. Solve the following system of linear inequalities graphically and find the corner points:

Solution.

Example 8. Solve the following system of linear inequalities graphically and find the corner points:

Definition 3 (Bounded/Unbounded). A solution region of a system of linear inequalities is bounded if it can be enclosed within a circle. If it cannot be enclosed within a circle, it is unbounded.

Question. Which of the regions in examples 1-4 are bounded? Which are unbounded?